3 research outputs found

    Multilevel Parallelization of AutoDock 4.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).</p> <p>Results</p> <p>Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.</p> <p>Conclusions</p> <p>Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.</p

    Accessible High-Throughput Virtual Screening Molecular Docking Software for Students and Educators

    Get PDF
    We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms

    AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4

    No full text
    AMDock (Assisted Molecular Docking) is a user-friendly graphical tool to assist in the docking of protein-ligand complexes using Autodock Vina and AutoDock4, including the option of using the Autodock4Zn force field for metalloproteins. AMDock integrates several external programs (Open Babel, PDB2PQR, AutoLigand, ADT scripts) to accurately prepare the input structure files and to optimally define the search space, offering several alternatives and different degrees of user supervision. For visualization of molecular structures, AMDock uses PyMOL, starting it automatically with several predefined visualization schemes to aid in setting up the box defining the search space and to visualize and analyze the docking results. One particularly useful feature implemented in AMDock is the off-target docking procedure that allows to conduct ligand selectivity studies easily. In summary, AMDock's functional versatility makes it a very useful tool to conduct different docking studies, especially for beginners. The program is available, either for Windows or Linux, at https://github.com/Valdes-Tresanco-MS . REVIEWERS: This article was reviewed by Alexander Krah and Thomas Gaillard
    corecore